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Aerodynamics Research Report No. 173

TRANSITION, MINIMUM CRITICAL, MINIMUM TRANSITION, AND
ROUGHNESS REYNOLDS NUMBERS, FOR SEVEN BLUNT BODIES
OF REVOLUTION IN FLIGHT BETWEEN MACH

NUMBERS OF 1.72 AND 15.1

by

Neal Tetervin

ABSTRACT: In the present investigation results of the stability
theory for laminar flow were compared with transition locations
determined from heat-transfer distributions obtained by pre-
vious investigators for seven blunt bodies of revolution in
supersonic flight. The comparison shows that when transition
occurred it took place even though the boundary la.er was
calculated to be very stable with respect to small disturbances
for the entire region between the stagnation point and the
transition location.

In every case transition occurired at a larger boundary-layer
Reynolds number than the estimated minimum Reynolds number
for transition. Consequently, no contradiction of the as-
sumption that there is a minimum transition Reynolds number
and no disagreement with the results of the method for esti-
mating this Reynolds number is found.

Five of the seven cases considered contained useful transition
data. A first examination of these five sets of data seems to
indicate a connection between the boundar.-layer Reynolds
number at transition and the maximum roughness Reynolds number
ahead of transition. A further examination, however, shows
that the scatter of these data is too large to conclude
statistically from only five sets of data that a connection
really exists.

The boundary-layer transition Reynolds number was found to be
influenced much more stiongly by the maximum roughness Reynolds
number ahead of the transition point than by the local wall
temperature ratio at the transition point.

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
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Transition, Minimum Critical, Minimum Transition, and
Roughness Reynolds Numbers, for Seven Blunt Bodies of
Revolution in Flight Between Mach Numbers of 1,72 and 15.1

This report presents the results of an investigation of
transition from laminar to turbulent boundary-layer flow

on seven blunt bodies of revolution in flight in the Mach
number range between 1.72 and 15.1. Mr. J. R. Katz pro-
grammed the required computations for the IBM 704 electronic
computer,
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SYMBOLS

ol

speed of sound
constant - equation (17)
constant - equation (53)

constant - equation (17)

a w o >

constant in Sutherland's formula for the viscosity

skin-friction coefficient, Cg = ?w/Piﬁez

(@]
e

pressure coefficient, (Pe/Po - Poo/Po)

(]
©

specific heat at constant pressure

ol
L

constant in equation (54)

enthalpy

ratio, (6%/8)

mechanical equivalent of heat, 778 ft-1lbs per BTU
height of roughness

k/L

equivalent sand roughness height

(3% 3-9/2( ¥ g-1)

dimei§1on1ess wall shear parameter,

(8/uefEu/Te) ( 21/ 27),
reference length

m (3- ¥ y2( ¥ E-1)

o] J“ ® K e I oo oA

o~

(o

M Mach number

n dimensionless correlation number,
-(82/9,)(1Ue/d%) (4 /Te) 2(To/Te)
N momentum parameter, 2 |n(Hyp+2) +i]
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Nu Nusselt number (see eq. (39))

) static pressure

p' (To/Te) -(1/M) dMg/dx

Pr Prandtl number

q heat transfer by conduction to surface per unit
area per unit time (x 2%/ 2Y)y

r recovery factor

R radius of cross section of body of revolution
R/L

Rey, reference Reynolds number, uyl/vo

Rek roughness Reynolds number, ukgk/vg

Reg momentum thickness Reynolds number, ugb/ve

Ree,c minimum critical Reynolds number of stability
theory, based on momentum thickness

Reg m minimum transition Reynolds number, based on
momentum thickness

Re, Reynolds number, ugx/ve

Rey Reynolds number, ugx/vw

Rego Reynolds number, Uy L/Vgo

St Stanton number (see eqs. (43) and (46))

Sw surface temperature ratio parameter, (I,/fo - 1)

k3 temperature

u velocity parallel to surface

uy VZFOJ

u u/uy

distance along surface, measured from origin
of boundary layer

i
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x x/L

y distance measured perpendicular from surface

a exponent of Prandtl number in Reynolds analogy
parameter (see eq. (40))

B non-dimensional pressure gradient parameter

¥ ratio of specific heat at constant pressure to
specific heat at constant volume

[ full boundary-layer thickness

KL boundary-layer displacement thickness,

:7?1-33/Feﬁe)d7

] boundary-layer momentum thickness,
pu/pelg(1-u/ue)dy

[ thermal conductivity

A (t°+ty‘f,+c1r /%o

Im dynamic viscosity

v kinematic viscosity

) mass density

T shear stress, p (Bﬁ/ bi)

s [(e Rey) z/x] ” (33-5?2

Subscripts

a measured along axis of symmetry

e local value at outer edge of boundary layer

E effective value

£ value for dp/dx = 0

k at distance k from surface

viiid
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at standard sea level atmosphere
maximum value

at stagnation point

for zero heat transfer

at transition point

agssociated transformed quantity
value at surface

free-stream conditions, ahead of bow shock wave

all quantities with a '"bar'" are dimensional, all
others are non-dimensional

ix
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INTRODUCT ION

It i8 well known that the heat-transfer rate for a turbu-
lent boundary layer is larger than for a laminar one and that
the difference widens with increase in boundary layer Reynolds
number. This difference in heat-transfer rate is often important
enough to justify the effort to provide an extremely smooth sur-
face in order to increase the probability of extensive regions
of laminar flow. When all other factors are fixed, the extent
of laminar flow usually increases with decrease in surface
roughness if the extent is less than that for a perfectly
smooth surface. Even for a perfectly smooth surface, however,
the position at which the flow changes from laminar to turbu-
lent cannot at present be calculated theoretically. Two
positions related to the transition position can, however, be
estimated. One is the position ahead of which transition
cannot occur when the boundary layer is exposed to very small
disturbances of a particular type. This position can be cal-
culated by use of the results of the stability theory (ref.
(1)). The other and more forward position is the one ahead
of which transition cannot occur when the boundary layer 1is
highly disturbed. A rough estimate of this position can be
made by the method of reference (2).

Because all information that can lead to a more accurate
prediction of the transition point is valuable, those two
theoretically determined positions are compared with transition
positions determined from heat-transfer distributions obtained
by previous investigators for seven bodies of revolution in
flight at supersonic speeds. The effect of roughness on
transition is also considered.

ANALYSIS

Derivation of Differential Equation for ¢

In order to estimate the location at which the boundar;
layer first becomes unstable, and the location ahead of which
transition is supposedly impossible, it is first necessary to
calculate a number of laminar boundary-layer parameters. A
convenient method is Cohen and Reshotko's (ref. (3)). The
method was developed for a gas which is both thermally and
calcrically perfect and which has a Prandtl number of unity
and a viscosity that varies directly with the temperature.
Although ¢, and¥ are consequently both constant, their numeri-
cal values are not specified in the Cohen and Reshotko method.

The form of the boundary-layer momentum equation used in
the present analysis is obtained from the herein corrected form

1
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of equation (B5) of reference (3). The correct form allows A
to depend on x and is

h - M /—i—-)K M—MJZ- (1)
= — 2 — L
Ff(%f) ART L % o Me -ii)

The value of ¥ that appears in the exponent K is an effective
value. Its determination is discussed in the section entitled,
"Calculation Procedure.'" From equation (1) there is obtained

the differential equation

N LA\K
EL_[TKL= — P«,+ Ljﬁgélz_ ji_ [TEQQEEEQ. (2)
dx LP(%)] ™ [m:,%%)J ax | AR

All quantities in equation (2) are non-dimensional. From the
definition (see eq. (34) of ref. (3)),

Ple—~L dle__ | due
T, dX Up dx

and the relations

¥~
5 Me
e = Y-l 2 @
J+ T Me
and
- 2
te (4)
it follows that
.(jgg)_ _ 1 dMe
P(%)” M. ax (5)
Moreover, the correlation number n, which 18 defined as,
e 8%/ %Y/
- — é__f' i) (&)(-.-ﬁ) (eq. (22), ref. (3))
d)( p“r 'tg -te.

2
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can be written as

— I /%
Nn= —-Ei&g';ae e’ jf’ ( fui>(i- )
d x L 2,

te/ \ e

The ratio (vVo/Vy) can be placed in a more convenient form by

(6)

noting that for a thermally perfect gas

Because the static pressure in a boundary layer is independent
of the distance normal to the surface,
= Fe

The ratio (Vo/Vy) can then be written as

gy -

From the assumption of isentropic flow at the outer edge of
the boundary layer it follows that

-

it follows that

&

(8)
The viscosity ratio (iw/},) is assumed to be given by the
relation
. _E—N
/_““’:/\ ~ (9)
Al to (see eq. (4) of ref. (3))
where
/% (see eq. (5) of ref. (3))
-f +C )

The viscosity at the wall is thus calculated by the Sutherland
relation.

By use of equations (8) and (9), equation (7) becomes

3
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- \2
— %,

Vo ‘z:) .

—

Y A [1 + X MZ“__]""'

When the relation (10) is substituted into equation (6) and
relation (4) is used, the result is

i (o [Re, )

n= 3-23¢

Yeg-l , a2
All+ X Me | e
which can also be written as

— 2
e 5 (oF)
)\[(+\%1Mﬂm

when equation (3) is used.

(10)

1)

——
—

By use of equations (5) and (1l1) the quuntity‘y/b‘(?o/fa)
that occurs in equation (1) can now be written as

n_ bR Me
Y - 2 m
PR Af+

where 3-Ye

m= ‘Z(7é‘6

Now introduce a quantity ¢ related to the non-dimensional
momentum thickness, 0 [/Re,, by the definition

2
4) — (eﬂ’i?u} U!Lz.l_ (13)
A

Then ; B che o che

7@ el &) av

(12)

4
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Equation (2) themn becomes

dMe - \K
d[3aMte _[__Fsﬂ__ d Me_(i:) 15)
dx[ﬁ =N+ [Ma(‘—,;)"} dx /\R{: o

AR?

After some manipulation and the use of equation (4), equation
(15) can be written as

dMe,

‘I;(
dé _ NU+Z ] 4+ (edMeTX 2 4R _ 1 dAr [ (16
d X Me \ ..‘rl R ax A dx

Equation (16) is the boundary-layer momentum equation in
a form that contains the Cohen and Reshotko parameter N, All
the quantities in equation (16) except ¢ and N are obtainable
from the given data. Then, if ¢ and N are known at one value
of x the value of ¢ can be found at a slightly larger value of
x by use of equation (16). This value of ¢, together with the
given pressure and wall temperature distribution and equation
(11), determines n. Because N depends only on n and Ty/%,,
the 1ntegration of equation (16) can then proceed. Once n and
¢ are known all other boundary-layer quantities can be calcu-
lated.

Derivation of Integral for Determination of ¢ Near Stagnation
Point

The stagnation point, where Mg and R are zero, is a singular
point of equation (16). When a numerical step-by-step solution
of equation (16) is begun at the stagnation point the result is
usually a variation of ¢ with x that is highly oscillatory and
diverging, at least for small values of x. One way to avoid
this difficulty is to calculate ¢ from an integral instead of
from the differential equation, equation (16). This integral
can be developed by noting that the wall temperature distri-
bution is a symmetrical function of x for a body of revolution
at zero angle of attack; all the bodies of the present investi-
gation were supposedly at, or close to, zero angle of attack,
Because the wall temperature is a symmetrical function of x
about the stagnation point it follows that

A
.B X=0

5
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When the wall temperature is independent of x, Cohen and
Reshotko (ref. (3)) suggest the approximation

N=A+Bn ; (17)

this approximation allows equation (16) to be integrated in
closed form and 80 results in the desired integral. For a
constant wall temperature, the term dA/dx in equation (16)

is zero and so drops out. In the present case the wall tempera-
ture 1s assumed to be constant from x = 0 to a large enough
value of x, say x3, to allow the step-by-step integration of
equation (16) to be started at x) without the difficulties
usually found when the integration is begun at x = 0, the
singular point of equation (16).

Upon use of the approximation given by equation (17) and
the relation

dMe
X

N=-— o 2™ )
R

which results when equations (11) and (13) are used, equation
(16) becomes

d |+ %M Mejz
dt=(+mj A(P xE-l ] % “));,-i . 26—3(19)

(18)

Equation (19) is a linear first-order differential equation for
¢, After integration the result is

Ye+! X
\5el Ye -
[:k ”461 F4e, CJ
e ) S X (20)
M R* [+ VE'M].}MJ
e
0
for the condition, « 0 at x = 0., In the present calculations

the use of equation ?20) from x = 0 to the value of x at which
Mg is equal to .05 was found to be satisfactory. At the first
few values of x very near zero, the values of ¢ computed by
equation (20) usually do not form a smooth sequence of values,
but this is not important because each value of ¢ is independent
of its values at smaller x. Usually, the variation of ¢ with

X becomes sufficiently smooth before x reaches the value at
which Mg 18 equal to .05,

6
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The values of A and B in equation (17) are found by making
the line given by equation (17) tangent to the curve N(n,Sy)

at the stagnation point (see fig. 4 of ref. (3)). The value
of B in equation (17) is then found from the relation

_ />N
6'— 'an> _ (21)
n=Ne

which follows from equation (17). Moreover, at the stagnation
point of an axisymmetric body

N,=—2No @

(see page 14 of ref. (3)). Therefore, from equation (17) it
follows that

A= —(e+z>r\° (23)

Adaptation of Cohen and Reshotko Method for Calculation by
Electronic Computer

In previous work at the Naval Ordnance Laboratory the Cohen
and Reshotko method had been adapted 80 that calculations could
be made by the IBM 704 computer. The adaptation consisted in
expressing the Cohen and Reshotko parameters |, (CtfRey/Nu)p..;,

Hiy, and (6/6)jya0 in an analytic form by the use of "least-
square' polynomials in the variables n and S,. In the present

work these polynomials were adjusted to eliminate slight
discontinuities in ] and in (CgRey/Nu)p =] &t n = O, Moreover,

in order to handle cases with values of n less than -.7 or

80, the polynomials for [ , (CgRew/Nu)pre]l and (6/6)ya.qg for

n < -.3 were replaced by straight lines that had the same slope
and value at n = -,3 a8 given by the polynomials. For the
quantity He,., the modification consisted in the use of the
value of H¢y at n = -,5 for n < -.5.

Value of ng

In order to begin the computation the value of ng must
be known; this value is used in equation (23), and also to get
the initial value of ¢ and so of (B'VReL)o by use of equations
(18) and (13). The present calculations are confined to bodies
of revolution at zero angle of attack. For such bodies, the
value of the non-dimensional pressure gradient parameter B is
1/2 at the stagnation point. Consequently, the correlation

7
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number n, which, in general, depends on both B8 and Sy, is,
for a stagnation point, a function only of Sy. An analytic
expression for this function was obtained by fitting a least-
squares polynomial of the second degree to the values of n
for B = 1/2 for all the Sy, values given in table 2 of refer-
ence (3). This analytic expression was incorporated into the
IBM 704 program.

Separation Criterion

Although the calculation of the separation point was not
an objective of the present investigation a criterion to
indicate the occurrence of a calculated separation point was
incorporated into the calculation procedure. The criterion
was obtained by noting that because the flows under consideration
do not begin at a separation point the value of the shear parameter
decreases as the pressure gradient parameter n increases (see
fig. 2 of ref. (3)). That is, the friction coefficient decreases
with increase in adverse pressure gradient. If n increases
sufficiently there is eventually reached a value of | such
that a further decrease cannot occur unless n is decreased.
For a decrease in adverse pressure giradient to cause a decrease
in friction coefficient is, however, physically unrealistic for
a flow that does not begin at a separation point. Consequently,
only the upper branch of the curves of figure 2 of reference
(3) seem physically allowable for the present computations,
Because the correct criterion for separation, namely, | - o,
i8 thus not attainable, it was assumed that a fair estimate
of the separation point can be obtained by assuming separation
to occur at the smallest allowable value of | . On each curve
of | against n for constant Sw, the smallest value of | occurs
at the largest value of n. These maximum values of n depend
only on Sy; the analytic form of the separation criterion was
therefore obtained by fitting a least-squares polynomial of )
the fourth degree to these maximum values of n. In the present
computations separation was not indicated in any of the seven
cases.

CALCULATION PROCEDURE

Given Data and Flight Parameters

The calculation procedure requires that the shape of the
body R(x), the pressure distribution pe/Po(x), and the wall
temperature ratio t,/T,(x), be given either in analytic or
tabular form In addition, all the quantities given in table 1,
except (8 TRep),, were needed. The temperature t,,, and the
density p_., in the free stream ahead of the body were either
part of tg% experimental data or elss were obtained from

8
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tabulated properties of the standard atmosphere (ref. (4)).
The temperature ratio to/ty,, and the pressure ratio P,/Poo,
were read from the charts of reference (5) when the velocity
Ugo wWas either greater than or only slightly less than 7000
ft/sec, the lower limit of the charts, For smaller values of
Uy, the tables of reference (6) were used.

Regy: The free-stream Reynolds number, Rego, was computed
from its definition .
U L

7?300:: iln

The velocity Uy, and the kinematic viscosity V were either
given explicity or else were obtained by calcuf%tion from
other given quantities.,

ReL: The reference Reynolds number, Rej, was computed
from the definition

R, — Wl

where

(24)

and -
7, = é‘f)(éf)z
Ao /\ Po

The ratio Jo/loo was calculated from Sutherland's formula

-\t [
— 2 -
o _ [ to f+f.,_ <3= 4@3.@%)
TS 2

and the previously obtained value of to/fgo. The effect of
dissociation on the ratio po/poo given by Sutherland's formula
can be estimated by use of table 6 or figure 8 of reference
(7). In most cases of the present investigation the correction

9
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to Sutherland's formula was less than ten percent. Because
this correction is small and because a more inexact formula
than Sutherland's is used in the Cohen and Reshotko method,
namely, equation (4) of reference (3), the small correction
for dissociation was not used. When the velocity ugy was
either greater than or only slightly less than 7000 ft/sec,
the ratio poo/po Was read from the appropriate chart of
reference (gg. For smaller values of Eoo' this ratio was
calculated from the relation for a perfect gas, namely,

| Eoo o
T

©

\,[bl

cleH

——

E{E: In the present calculations the departure of air from
perfect-gas behavior at high temperatures is partially
accounted for by allowing the value of ¥ to have a value
other than 1.4 in the relations involving this ratio. The
value of ¥ used to obtain the relations between various flow
quantities behind the nose shock is called ¥ g and is assumed
to be independent of x and y. For values of Mgy less than
about four, the value of ¥ g Yas taken as 1.4. For larger
values of My,, the value of Y g was initially estimated by
use of the charts of reference (5) by first locating the
stagnation point conditions on the Mollier chart of refer-
ence (5) and then proceeding along a line of constant entropy.
The values of log p/py along this line of constant entropy

were plotted against the correspondinﬁ values of log p/P1
The result was approximately a straight line with slope ¥y .

Later, a simpler method for calculating ‘XE was used. In
this method the value of ¥ - was chosen to give the correct
value of the non—dinensionaf velocity gradient, (due/dx), at
the stagnation point. This value of E vas obtained by noting
that from the equation of motion for the flow outside the

boundary layer, _ —_
_.-a d(IQ____ dPﬁ

Eé ezri - AX

it follows, after use of L'Hospital's rule, that
dike) _ |[_Fo[d® [Fe
(dx — -ﬁ: g;’-< P (25)
o po o
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Moreover, from equations (3) and (8) a different expression
can be obtained for (due/dx),. This expression contains Y’E

and is,
dae . - |"7’€ [_é: 'Fcﬂ (26)
(olx)o‘— Lo | 7o [3=45),

The value of uy, the maximum attainable velocity, is equal

to VZEOI, where Ho is the stagnation enthalpy. The value of

¥ g is now defined to be that which makes the value of
(dug/dx), calculated from equation (26) equal to the value
calculated from equation (25). Thus, after equating equations
(26) and (25), the result for ¥ p is

— —

¥, = ““ == 27)

Experience showed that ¥  could be calculated more quickly
by use of equation (27) tEan by the procedure involving the
use of the Mollier chart of reference (5). Moreover, the
value of ¥ ; obtained by use of equation (27) was close to
that calculated by the use of the Mollier chart,

Bo: The value of the stagnation enthalpy, h,, was calcu-

latea—by use of the relation
— —~ Yo ! 2
- ”t < 2 -
ho CP Lo ‘ Al 2 [\/\ao (28)

The value of C, was taken as 7.725 BTU/slug/deg Rankine and
Y o was taken equal to 1.4

dMg/dx: In order to integrate the momentum equation,

equation (16), the quantity dMg/dx is needed. By differentiating
equation (8) there is obtained the relation

11
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(29)

dle ol (%)
AX Ye | 2 @% [_<%)1%' "

In some cases the data were given as the pressure coefficient
ratio Cp/Cpo(x) rather than as Pe/Po(x). In these cases pg/Po
was obtained from Cp/Cp by the relation that follows from
the definition of Cp, namely,

PN C:
PR

Spo (30)

(dMeg/dx)o: At the stagnation point dMg/dx is needed in
order to calculate (GV ReL) Note, however, that it is not
needed there for the Lntegration of equation (16) because
this equation is8 not used until a larger value of x. Because
- Pe
pe/ﬁo is a symmetric function of x, the derivative d(:f—) /dx 1is
zero at x = 0. Consequently, relation (29) is indeterminate

there. In order to obtain an expression for (dMe/dx)
L'Hospital's rule was applied to equation (29) with the result

L[4 /e
Ye [dx F)]o oD

d2/dx2(pe/p°) o: The value of dz/dxz(pe/po) o Or of

d2/dx2(Cp/Cp°) o, for use in equation (31) was obtained
elther from an analytic expression for Cp/Cp or from tabular
data obtained by smoothing the values of (pg/pPo) read from a
graph. When smoothed tabular data were used, the value of
d2/dx2(Cp/Cp°) o ¥as obtained by one of two methods. In the

first, values of Cp/Cpo wvere read at equal intervals im x
near x = 0, a difference table constructed, and the second

derivative obtained by use of Newton's forward difference
formula, namely,

12
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a* ££.> {
dx* \ pe o:: @’- AL(%%)’AS(%%)+£&%H (32)

This formula is obtainable by differentiating equation (5),
page 192 of reference (8).

When this method was used for the "1/10th-Power'" Nose
Shape and for the Elliptical-Nose Cylinder the values of both
(6 Y ReL)o and qo did not form a "smooth" extension of their
values for larger x. It was found, however, that the values
ot (91/ReL) and gy did fair smoothly into their values at
larger x when the C /C distribution for small x was repre-
sented by the parabola

p = )—ax* (33)

o

The value of "a'" was calculated for the '1/10th-Power" Nose
Shape by making the parabola given by equation (33) give the
smoothed value of (C /Cp ) at x = ,1, For the Elliptical-Nose
Cylinder the correspondlng value of x was ,05 instead of .1.

Smoothing of Data

By experience it was found that in order to obtain suf-
ficiently smooth calculated distributions of the heat transfer
3 and some of the other boundary-layer parameters with x, the
Pe/Po data had to be "smooth.'" When pg/Po(x) was given in the
form of a mathematical expression, the smoothness requirement
was satisfied. When pe/Po(x) was given in the form of a
graph, Pe/—o was read at convenient intervals in x to produce
a table. These tabular values were then smoothed by a five-
fold application of formula (1) on page 276 of reference (8).
This is a five-point, third-degree, least-squares smoothing
formula. Although it was not certain that the smoothing pro-
cedure was necessary it was also applied to the radius distri-
bution R(x), and the wall temperature distribution Ty(x). The
smoothing procedure often produced a slight change in the
original data distribution,

Formulas for Boundary-Layer Quantities

Reg: One of the boundary-layer quantities of interest is
the boundary-layer momentum thickness Reynolds number Reg,

13
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defined as R _ Ug-é
€o ’)");

By introducing the reference Reynolds number Rej,, Reg can be

written as
A
ﬁe = Ue B Re,_ 52

or, after use of the perfect-gas law and equations (3), (4),
and (8) as

Koo _ PE MellR) 5
}GE;- (} +_Yele t]%%?) ;iz-

The value of Reg in the present analysis was calculatgd by
using the Sutherland viscosity formula for the ratio py/pe.

(34)

3/2
Rek/szeL : Often of interest is the roughness Reynolds

number, defined as - -
ex aj,(
A convenient expression for Rey for small values of (k/8) can
be obtained by expanding the velocity u and the kinematic
viscosity vV in a series iny and keeping only the first power
of y. To the first order in y, the expression for Rey becomes

W.)
RKe = K (35)
X Z)w

The expression (35) 1is expected_to be sufficiently accurate
when X is8 not much larger than 6. In the present investigation
the measured values of k on all the bodies were always less
than (8/7).

When the relation

Gl

rH[ gl

®|]=I

) (38)

14
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which is equation (21) of reference (3), is used together_
with the perfect-gas law and the approximation that p, * Pw,
equation (35) can be written as

R Xi—)(t)

= 37
RQK (37)

When equations (3), (4), and (8) are used, equation (37)
becomes

Rex 5 M (%\L — (38)
KRS ) (oRe) 14+ % w700

The computatio§7 made by the IBM 704 machine gave the
quantity Rek/k Rey, From this quantity, the roughness
Reynolds number Reyg was calculated for the desired value of
K.

(Nu/x): The heat transfer by conduction per unit ares of
surface per unit time is given by

- 3 __E__ — ;(—wa
G \2{/ur
The Nusselt number is defined %s
N _ Yl’)w
“ I - tw
in reference (3). In the present analysis this definition is
generalized to

)
N —_ i ? — XCPwZ (39)
w

l"r —kw‘ o ‘K_V(I"i-r'—:[:/)

because of the high temperatures in some of the cases analyzed.
In order to calculate Nu, the relation

Ne  _ C¥Rew
V—R:,/ cw,) (40)
Po=

15
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which is equation (38) of reference (3), is used. Upon use
of the definition of Cg, of Rew, and the relation

and equation (36), it follows thut

X

When equations (4) and (41) are used, equation (40) becomes

to
Nu _ Vi 2 Gﬁ) . ) (42)
<A elven)

The value of the Prandtl number was read from figure 11
of reference (7) for the average temperature and pressure
on the surface of the body. The value of a was taken as .4,
the value suggested in reference (3).

St: Also of interest is the Stanton number, Stgg, defined
as

—

_ _1
54’” o .(ZI.» (R‘Iw) (43)

The Stanton number can_be expressed in terms of the Nusselt
number by eliminating q from relations (39) and (43). Upon
use of the definition of the Prandtl number, the result is

Nw A
St_—=
" . fole

When equation (9) is used, equation (44) becomes

T 'P..,,Re Ao

The value of Pry used in equation (45) was the same as that
in equation (42).

(44)
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The Stanton number can also be based on local gas properties
at the outer edge of the boundary layer. In this case the
Stanton number is denoted by Ste and is defined as

-——

(-?-.,Ee_ ("\r""lw)
By eliminating q between equations (40) and (46), using

r ue to form Reg, and then using equation (34) for Reg, the
result after using equation (9), is

Ste (46)

+|
Ne oy <iﬁ>—l‘ . Y‘H'Me’ ) (47)
X to) P Re |%t ol M,

Ste =

Here, again, the value of Pry, is the same as in equation (42).

T% The heat transfer was calculated by use of equation (43)
written

-—

_— - — T I‘—" T’lc. _by_
§= St P te h. <-Rc. Te o (48)

The ratio hg/hy 18 calculated from the relation for the
conservation of energy outside the boundary layer, namely,

he _
o |+ e
2he
The gas is8 assumed to be thermally and calorically perfect

with a constant effective value of ¥ called ¥ g. For 8uch
a gas the relation between he and the speed of sound, ne, is

-— — 2

he= 22
¢ Yo (49)

When this relation is used in the relation for hg/hg the
result is __

e —
ha H-‘%—' Mt (50)
17
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The ratio hy/hg 18 calculated from the relation

:EE et ] .jgi
T‘\c 24 he_

where r 18 the recovery factor, taken equal toL/Pf;l

This relation becomes

—1:1 Ye-l 2
‘_g.:'—‘\“"r‘%,‘Mc (51)
A

when equation (49) is used. Upon the use of equations (50)
and (51), equation (48) becomes

T =St -——E I‘o [+F§Mé . }'\ur
% - oo() ‘+r§2———lM;’ _Eo (52)

In order to partially account for the fact that hy/h, is not
necessarily equal to Ty/f,, without increasing the length of
the computation, the ratio E'/Eo was approximated by the
expression

L’\N - b w
+ ¥ (53)
The
An expression for b was constructed by imposing two conditionms.
The first was that at the stagnation point

}7.,: }')ufo
Therefore b is given the value (Byo/Bo)/(¥yy/To) when Ty = Ty,.
The second condition was that

N
=%

Therefore b is given the value unity when ty = T,. The two
conditions then are —

where

18
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and

L>= ‘ 'por -_sz ——EO

For other values of T;, b is assumed to vary linearly with YQ.
The result for b then is

\—d :Ex_..:ZW%
e (Qo %o +a (54)

hore N @
%

Because the wall temperature usually fell with increase
in distance from the stagnation point, more accurate calcu-
lated values for g would have resulted if b had been made
equal to unity at Ty = too instead of at Ty = T,. This change

in b would have increased hy/h, in equation (52) and so would
have reduced the calculated va?ues of q.

In every case the appropriate calculated quantity, namely,
either Sty,, Ste, Oor q, was compared with the distribution
along the surface obtained from the experimental temperature
data and presented in references (9) to (16). For these seven
cases the calculated and experimentally obtained quantities
were close enough together to indicate that the method used
to calculate the characteristics of the laminar boundary layer
is sufficiently accurate for the purposes of the present
investigation.

5%/8, 6/6: The boundary-layer thickness ratios 6*/6 and
6/6 were also calculated. The expression for 6%/6 is

* \("l 2
5% (0,
and the expression for 6/6 is
X B:r +_X5-l Z H +1
L = S B , (56)
5 9* 2 Me( 4 >

Equations (55) and (56) are equations (40) and (41) respectively
of reference (3) with ¥ replaced by ¥ g.
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?'/355.2: The local friction coefficient, Ty/PelgZ, is
often of interest. The relation

T, (BE)

=

T Al
is used with relations (36), (9), (8), (4), and (3) to obtain

JI-Yg

= _ U [+m]™ (s)
U N £ R, Me

8: In order to estimate the value of Reg below which the
stabllity theory (ref. (1)) predicts that all small two-di-
nensional disturbances decay, the tables of reference (17)
were used. In order to use these tables it is necessary to
know the value of the non-dimensional pressure gradient parameter
B. The computations by use of the Cohen and Reshotko method
(ref. (3)) result, however, in the non-dimensional pressure
gradient parameter n instead of 8. The parameter 8 is a
function of n and the non-dimensional wall temperature parameter
Sw. This function is shown in figure 4 of reference (17). In
the present investigation B was expressed as a function of n
and Sy by a least-squares polynomial of the fourth degree in
both n and Sy and the values of 8 were calculated from this
polynomial,

Reg,c: The minimum critical Reynolds number, Reg,c is

the Reynolds number below which all small two-dimensional
disturbances are damped. Once the value of 8, of Mg, and

of Sy was known at a value of x, the corresponding value

of Reg, c was obtained from the tables of reference (17).
Because the values of B, Mg, and Sy usually did not correspond
exactly to an entry in tho tables of reference (17) it was
necessary to interpolate. A sufficiently accurate method of
interpolation was first to change the tables to tables of
logjoReg,c insteau of Reg,c. A linear interpolation pro-
cedure in B, Mg, and Sy was then used to find the value of
Reg,c for givon values of 8, Mg, and Sy. This interpolation
was part of the calculation routino and wvas made by the IBM
704 electronic computer.

Ree',: The minimum transition Reynolds number Reg ,a 18 the

value of Reg below which transition supposedly cannot begin, The

20
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value of Reyg m was estimated for each value of x by first con-
structing a table of Reg m,6t against Mg from the curve for

Reg m ¢ for an insulated’'surface given in figure 2 of reference
(2?'aﬁd then interpolating to find the local value of Reg p ¢

for the local value of Mg. For reasons given in the "Disc¢ussion"”
and in reference (2) only the curve for an insulated surface

was used even though the surfaces were not insulated. The

value of Reg p was then obtained by the relation

K
_ _Negym
Ree,vn o ?ee;"’); ( ?ee,m,i>

where the ratio (Reg,m)/(Reg,m,f) was obtained from the curve
marked ''equation (675" of figure 5 of reference (2). This
curve was first converted to a table of (Reg,m)/(Reg g ¢) for
equal increments in 8 and an interpolation was made to’'tind
the value for a required value of B,

Method of Integration of Differential Equations

In order to calculate the value of the integral in equation
(20), the integral, called I, was calculated from the equation

B-I
2.
_Cig\:__: Me, K el é[@):o) (58)
PR S H e

This differential equation was integrated by a procedure that
was already coded on the IBM 704 electronic computer (ref. (18)).
The procedure consisted in using the fourth order Runge-Kutta
method for the first two steps in x and then using the fourth
order Adams-Moulton predictor-corrector method. The same
procedure was used to integrate equation (16) from the first
point at which it replaced equation (20) to the end of the
range of x. For the present computations the IBM 704 elec-
tronic computer used eight significant figures in all the
calculations and the results were printed out to five sig-
nificant figures., The step size in x was .001 for all the
calculations. By trial, this interval was found to be
sufficiently small s0 that a doubling of the interval in a
few test cases affected, at most, only the fifth significant
figure in one or two of the boundary-layer parameters at a
few values of x.
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BODY DATA AND CALCULATED RESULTS IN TABULAR FORM

Table 2: Table 2 indicates how the pressure distribution,
the wall temperature distribution, and the radius distribution
were obtained for each of the seven bodies.

Table 3: In table 3 are given the '"'surface roughness"
data for the seven bodies. Also given are the roughness heights
that were used in the calculation of the roughness Reynolds
nunber Reg.

Table 4: The quantities listed in table 4 were calculated
by the methods described in the sections entitled, 'Analysis,"
and '"Calculation Procedure." The included range of x is equal
to, or slightly greater than, the range for which the flow was
judged to be lamipnar. From the listed quantities any other
quantity for which a formula is given in the section entitled,
"Calculation Procedure," can be computed. To get Htr and
6tr/8¢r for use in equations (55) and (56) it is necessary
to use figures 7 and 8, respectively, of reference (3).

SOME FREE-FLIGHT DATA AND CALCULATED STABILITY
AND TRANSITION RESULTS

In figures 1 to 7 is shown the calculated variation with
x of Reg, Reg ,ms Rex, and Mg at the largest Mach pumber at
which data were available for each of the seven bodies. Also
shown is the calculated minimum critical Reynolds number,
Reg ¢, and the measured wall temperature distribution.

290 Hemisphere-Cone: In figure la is shown the variation
of the boundary-layer Reynolds number Reg and the minimum
transition Reynolds number Reg ,m with the non-dimensional
distance x from the stugnation point for a hemisphere-cone
with an included angle of 29° (ref. (9)). Also shown is the
range of values of Reg ¢. Transition occurred somewhere
between x = ,6632 and x = .7850, that is, between 38° and 45°
from the stagnation point, at a value of Reg between 642 and
742, In this region of the body, Reg  was more than 100
times as large as Reg. Ahead of the fransition region, this
ratio was still larger. Transition therefore occurred even
though the boundary layer was estimated to be very stable
with respect to the small two-dimensional disturbances used
in the stability theory. It is apparent from the figure that
Reg exceeded Reg n beyond sabout 3.2° from the stagnation
point.
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In figure 1lb is shown the variation of the local Mach
number, Mg, the local ratio of the surface to stagnation
temperature, t,/f,, and the local roughness Reynolds number
Rex. In the transition region, Mg lay between about .8 and
1.0, The wall temperature ratio, ty/t,, varied from about
.565 at the stagnation point to about .515 at x = .7850., The
maximum value of the roughness Reynolds number was ,0157 near
X = ,60; this roughness Reynolds number is based on a roughness
height of three microinches (see table 3).

The data given in table 4 for the lower Mach numbers for
this body also show that transition occurred where Reg,c was
very much larger than Reg. It i8 noted that at Macn numbers
of 2.32 and 2.47 there was a region of the body, roughly
between x = 1,5 and x = 1,9, in which Reg o was less than
Reg. In both of these cases transition occurred further back,
where Reg . was larger than Reg.

5009 Hemisphere-Cone: In figure 2a is shown the variation
of Reg, Reg ,,, and Reg o with x for a hemisphere-cone with an
included anéTe of 500 lref. (10)). Transition began somewhere
between x = .3379 and x = ,5222, that is, between 19.3° and
29.9° from the stagnation point. In this region, Reg lay
between 303 and 436. The critical Reynolds number, Reg ¢,
wvas more than 100 times as large as Reg ahead of, and in the
first part of the transition region. Transition is supposedly
impossible ahead of about 3.39 from the stagnation point, the
region in which Reg was less than Reg ,. At the lowest Mach
number, namely at 2.5, the data in table 4 indicate that
this point moves back to about 4.39.

In figure 2b is shown the variation of Mg, tw/f,, and Reg.
The local Mach number, Mg, in the region in which transition
began was between .40 and .63. The local wall temperature
ratio fell slightly from .46 at the stagnation point and then
rose to .57 near the 300 station where the flow was definitely
in transition. The maximum value of Rex was equal to about
11.1 and occurred at about x = .36, just beyond the last
thermocouple at which the flow definitely was laminar. The
values of Rek were calculated by use of a roughness height
of 70.7 microinches. This number was obtained by multiplying
the measured rms values of 25 microinches by ¥ 8 in order to
obtain the peak height; the factor, T8, follows from the
assumption that the roughness can be approximated by a 'sine-
wave'" shape (ref. (19)). The value, 25 microinches, was
obtained by use of a profilometer before the surface was
oxidized to stablilize the emissivity. The oxidation probably
increased the roughness height and so the actual maximum
roughness height might easily have been larger than 70.7, the
value used to calculate Rek.
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Just as for a flight Mach number of 4.7, transition at
the lower Mach numbers occurred between x = ,3379 and x = ,5222
(see table 4). In the region in which transition began, the
critical Reynolds number, Reg c, i8 more than 60 times greater
than Reg for all five Mach numbers for which data are given in
table 4.

Hemisphere-Cylinder

In figure 3a is shown the variation of Reg, Reg,m, and
Reg ¢ with x for a hemisphere-cylinder (ref. (11)). The
results from this flight do not allow transition to be more
precisely defined than to say that it occurred somewhere
between the stagnation point and the 11 1/20 location (x =
.2008). Consequently, transition occurred at a value of Rep
less than 220. Transition occurred even though Reg . was
more than 1700 times as great as Reg. The data in table 4
indicate that for all five Mach numbers, Reg . was at least
800 times as large as Reg. Transition 1s supposedly impossible
ahead of about 2.8° from the stagnation point. Transition
therefore occurred not more than about 9° behind the most
forward possible point. At the lowest Mach number, namely
3.0, the data in table 4 indicate that the most forward
posnible trapnsition point moved back to about 4.3° from the
stagnation point.

In figure 3b is shown the distribution of Mg, tw/tg, and
Rexy. Transition occurred in a region in which the local Mach
number was less than .24. The wall temperature ratio was equal
to .24 at the stagnation point. The roughness of the body
was stated to be about three to five microinches near the
stagnation point and about five microinches further back.
Scratches of the order of 15 microinches existed behind the
stagnation region. These numbers were obtained by use of an
interferometer microscope, not on the body itself, but on a
sample of the body metal polished in the same way as the
body. In reference to the early transition in this test,
the original investigators (ref. (l1l1)) suggest that perhaps
irregularities other than the five microinch surface roughness
caused the early transition.

"1/10th-Power' Nose Shape

In figure 4a is shown the calculated data for a body,
(ref. (12)), whose nose shape is defined by the equation
given in table 2, At x = ,416 the flow was laminar but at
x = .611 transition wvas already well along toward completion.
Transition therefore began at a value of Reg between 277 and
417. At the lower Mach numbers transition occurred further
back. In fact, at the lowest Mach number transition had not
occurred at x = 1,920, the location of the rearmost thermocouple.
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When transition did occur, Reg was more than 250 times
larger than Reg for the entire’length of laminar flow for
all Mach numbers. The indication from figure 4a is that the
value of Reg was less than Reg ,n for x  .1. At the lowest
Mach number, namely, 1.72, the corresponding region was that
for x £ .15. The information in figure 4L indicates that
transition occurred between a local Mach number of about .3
and ,8. The wall temperature ratio varied from about .26

at the stagnation point to about .40 at x = ,611. The maximunm
roughness Reynolds number in the region in which the flow
definitely was laminar was equal to 1.3,

Flat-Face Cone-Cylinder

In figure 5a is shown the variation of Reg, Reg ,, and
Reg o with x for a body consisting of a flat face followed
by a cone which is followed by a cylinder (ref. (13)). The
last thermocouple on the cone, at x = 4,493, indicated laminar
flow. A calculation of the heat-transfer rate at x = 5,290
under the assumption that the flow was turbulent results in
a heat-transfer rate of about 44 BTU/sq ft/sec. The calculated
value for laminar flow is about five BTU/sq ft/sec and the
value given in reference (13) is about 33 BTU/sq ft/sec. Conse-
quently the flow not only, was not laminar, but probably was
completely turbulent. It is remarked that the value of x for
station (13) in reference (13) should be 5.290 instead of 4.77,
the value given in reference (13). At x = 4.906 the calcu-
lated value is about 44 BTU/sq ft/sec for turbulent flow,
about five for laminar flow, and the value given in reference
(13) is about 73. Therefore, although the flow may not have
been completely turbulent at x = 4.906, it does not appear
to have been laminar. Transition therefore occurred between
x = 4,493 and x = 4.906. Similar calculations for flight Mach
numbers of 13 and 10 lead to the same conclusion, namely,
that transition began between x = 4.493 and x = 4.906.
Transition thus occurred near the intersection of the cone
and the cylinder, the region in which Reg increased rapidly
by a factor that varied between about 3.2 at a flight Mach
number of 14.5 to about 2.2 at a Mach number of 10. C(Conse-
quently transition occurred at a value of Reg that was in the
neighborhood of 500 even though Reg,c was infinite. Beyond
the first 43 percent of the front face, Reg exceeded Reg n.

In figure 5b is shown the distribution of Mg, Tw/To, and
Rex. The maximum value of Reg is about 1.7 and occurs on
the radius of the nose corner. A smaller local maximum occurs
at the cone-cylinder junction; its value is about .23. The
wall temperature ratio was about .18 near the stagnation
point and fell to about .10 at the end of the conical portion
of the body.
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Spherical-Segment Nose

In figure 6a is shown the variation of Res, Reg Y and
Reg o with x for a body made up of a spherical segnent followed
by a° cylinder (ref. (14)). The flow appeared to bs laminar
over the spherical face and over the cylinder at least as far
back as x = ,716, the location of the rearmost thermocouple.
Note that Reg was small over the entire body. The maximum
calculated value is about 170 just beyond the face-cylinder
Junction. The value of Reg then dropped rapidly to a minimum
near 20 and then increased slowly to the rear. The values of
Reg were so small that although they exceeded Reg,y at about
80 from the stagnation point they were never more than about
2 1/2 times as large as Reg ,me Moreover, over the cylindrical
portion of the body Reg m exceeded Reg. It 18 noted that these
values of Reg n are calculated for an insulated surface and so
may be too large because the ratio Tw/To is very low in the
present case. Even if the values of Reg g were only half .f
those shown, Reg would still be less than Reg n over most of
the cylindrical portion of the body and not much larger over
the face. In the present case the boundary layer remained laminar
where stability theory predicted it should.

In figure 6b is shown the_distribution of M,, T/,
Rex. Note the low values of ty/f,; this ratio was ot greater
than .12 over the entire body. Some data indicate that when
the ratio ty,/¥, 1s small, of the order of .25 or so, transition
occurs far forward on the body (refs. (20) and (21)). In this
and in the previous case, where the wall temperature ratio was
also near .12, laminar flow existed in spite of the low value
of this ratio. It is noted, however, that although a large
portion of the body was covered by laminar flow, the maximum
values of Reg for the laminar flow were small. Also to be
noted is that in the present and in the previous case the
Reynolds number per focoti, which, in reference (21), is stated
to be important in the '"transition-reversal' problem, was
low.

Elliptical-Nose Cylinder

In figure 7a is shown the variation of Reg, and Reg

with x for a body with an elliptical nose followed by a’

cylinder. This body is called "3-204-1" ip references (15)
and (16). The smallest value of Reg . over the region of
laminar flow is also listed. For this body, calculations
were made for two meridian sections. Along section ABCEA'
the measured surface roughness height was 1/2 microinch,
root-mean-square., Along section ALM the measured roughness
height was 1/2 microinch, rms up to x = ,3491; for x > ,3491
the roughness was 45 microinches, rms.
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Along section ABCEA', the smooth section, transition began
near x = 1.815. The nose-cylinder junction is at x = 1,.115;
consequently, laminar flow covered the face and a portion of
the cylindrical afterbody equal in length to .7 of the cylinder
radius. Transition began at a value of Re6 of about 1080,

Here again, transition began in a region in which Reg,c vas
very much larger than Reg. Transition was supposedly impossible
ahead of x = .086, the region in which Reg < Reg n.

In figure 7b is shown the distribution of local Mach
number Mg, the ratio of the local wall temperature to the
stagnation temperature t,/t,, and the local roughness Reynolds
number, Rex, for the smooth section, section ABCEA'. The
peak in the distribution of My, at x = 1.2, was introduced by
the procedure for smoothing the pressure distribution data,

A small change in the pressure distribution near the face-
cylinder junction is not believed to affect significantly
any conclusions which depend on the values of Reg or Rey
further downsiream.

The values of t,/T, were low; they varied from about .2
near the stagnation point to about .13 near x = 1.858. The
largest value of Re, was about .0182 and occurred at x = ,955,
In the region in vhich transition began the value of Rex was
about ,0004.

In figure 7c is shown the distribution of Rey for secti<a
ALM. At the edge of the roughness patch, at x = ,3491, the
roughness Reynolds number jumped from about .0030 to about
24.5. Transition began somewvhere between x = ,4190 and
x = ,6290, not far from the start of the roughness patch.

DISCUSSION

Because the boundary-layer Reynolds number is zero at the
stagnation point, the flow is always laminar there. MNoreover,
any disturbance of the laminar boundary layer will, because
of the smallness of the Reynolds number near the stagnation
point, die out as it proceeds downstream with the flov.
Consequently, transition camnot occur very close to the
stagnation point. Further back, however, the local boundary-
layer Reynolds number usually becomes large enough for dis-
turbances to the laminar flow to either cause transition
almost immediately if they are large enough, or to grow as
they proceed downstream. The disturbances that grow as they
move downstream usually result in transition somewhere down-
stream of the location of initial amplification.
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Comparison with Results of Stability Theory

Although the location where very small disturbances begin
to grow can be calculated by the stability theory (ref. (1)),
the transition position cannot be calculated because the
disturbances soon become too large for the stability theory
to apply. The stability theory is at present limited to wave-
like disturbances whose amplitude is8 small enough to allow
the equations of motion and energy to be linearized. 1In
the present investigation the results of the stability theory
are used to estimate the distribution of the critical Reynolds
number, Reg, ¢, along the body and thus also the point at which
Reg exceeds’ Reg,c. The critical Reynolds number of the present
analysis 1is the Reynolds number below which all small two-
dimensional wave-like disturbances die out. Above this
Reynolds number, disturbances with the proper frequency can
grow. Consequently, if Reg exceeds Reg , disturbances can
grow and the flow is unstable. Although Dunn and Lin (ref.
(1)) have, in their stability theory for compressible flow,
also treated disturbances that travel at an angle to the main
stream, the present investigation estimates Reg . only for
disturbances that travel inthe direction of the main flow.
It i8 not clear just what sort of a spiral path a disturbance
traveling at an angle to the main flow would take on a body
of revolution.

Although the stabllity theory is derived for the flow over
an infinite plane it is applied in the present investigation
to the flow over a body of revolution. About 20 years ago,
Pretsch showed that if the boundary-layer thickness over a
body of revolution is a small fraction of the radius of
curvature of the surface, the stability theory gives the
gsame critical Reynolds number for the flow over a body of
revolution as for the flow over an infinite plane (ref. (22)).
Pretsch derived his result for incompressible flow. It is
assumed that the same result is valid for compressible flow,

In the present analysis the values of Reg ,c vere obtained
from the tables of reference (17). These values were calcu-
lated by use of Lees' formula for the rapid estimation of
Reg ¢ (ref. (1)). Lees' formula is approximate and is probably
a useful approximation only when the local Mach number outside
the boundary layer is less than or not much larger than unity.
It is remarked that for Mach numbers greater than about two,
even the exact method of calculation of Reg . appears still
to be under development. For certain condiiions Lees' formula
predicts that Ree is infinite. It turns out that the formula
provides a good oatinute of these conditions (ref. (1)).
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It is clear from the data in figures 1 to 7 and from the
data in table 4 that transition not only occurred at values
of Regp less than Reg, 6 ¢ but also occurred where Reg . was
infinite. Moreover, except for the 29° hemisphere-cone at
Moo = 2.32 and at 2.47, transition, when it occurred,

occurred even though Reg . was much larger than Reg for the
entire region between thé stagnation point and the transition
region. Consequently, it is concluded that for laminar flow
to exist it is not sufficient that Reg be less than Reg  c.
Moreover, it is also concluded that the probable reason for
the occurrence of transition even though Rey was less than
Reg'c, is that transition was not caused by the growth of

the small two-dimensional wave-like disturbances imposed at
one instant as assumed in the theory for the calculation of
Reg . Because the values of Reg . are approximate, they may
be too large. It is believed, hovever, that they are not
sufficiently greater than the correct values to affect these
conclusions,

Comparison with Calculated Minimum Transition Reynolds Numbers

When the disturbances to the laminar flow are large enough,
transition can occur even though Reg is less than Reg  (see
for example, ref. (2) and ref. (23)). An attempt was previously
made to estimate the smallest Reynolds number at which transition
can begin (ref. (2)) and led to the result that this Reynolds
number, called Reg p, 18 the value of Reg at which the local
laminar and turbulent friction coefficients are equal., Conse-
quently, in order to calculate the value of Reg, m at an
arbitrary value of Mg and Tw/To it is first necessary to calcu-
late the effect of Mg and Ty/To on the laminar and turbulent
friction coefficients, This effect was calculated by use of
the reference enthalpy method (ref. (24)). Because, however,
of some uncertainty in the ability of the reference enthalpy
method to predict the turbulent friction coefficient for cold
walls, Reg m was calculated under the assumption that a good
estimate for Reg p is the value for an insulated wall, even
if the wall is colder (see ref. (2)). The use of the refer-
ence enthalpy method causes a decrease in the estimated value
of Reg . p as the wall temperature is lowered. For example,
the value of Reg m at x = ,7204 on the body designated as
"spherical-segment-nose'" cylinder, where Tty/%o is about .27
and M, is 4.064, is slightly less than 50, whereas the value
given in table 4 for an insulated wall and shown in figure 6a
is 95.4, Consequently, for the bodies with cold walls the
values of Reg , given in table 4 may be as much as double
the values thit would have been calculated for the actual wall
temperature ratios. This fact, however, does not change the
conclusion illustrated in figure 8, namely, that the values
of Reg at transition, called Reg T, were in all cases much
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larger than the values of Rey p, at transition. The value of
Reg T is taken at the last tgérmocouple at which the flow was
laminar. Therefore, the transition point values of Reg are
actually somewhat larger than those given in figure 8. Because
all the values of Reg T were larger than the values of Reg ,

at transition, the present data show no contradiction of the
concept or of the method for estimating Reg n.

Roughness Reynolds Number

The roughness Reynolds number, Rey, was calculated because
it 1is known to be a significant measure of the ability of
roughness to cause transition. For example, investigators
have found that the average value of Rex needed to produce
transition at a 1/4-inch wide strip of sandpaper-type roughness
in subsonic flav is about 400 (see for example ref. (25)).
Moreover, reference (25) states that the transition Reynolds
number based on X, decreases to 95 percent of its value without
roughness when Rex for a l1/4-inch wide strip of sandpaper is
between 178 and 330.

For the bodies of revolution concsidered in the present
investigation, Reyx begins at zero at the stagnation point
and then increases; it may have one or more local maxima on
the body. For the cases analyzed in the present investigation
the maximum values of Rey, fall between .0082, calculated for
the 299 hemisphere-cone at M = 2.32 and the value 30.80
calculated for section ALM o the Elliptical-Nose Cylinder.
These values of Rex are much smaller than the values of Rey
for which strips of sandpaper-type roughness first affect
transition. For example, the largest value, 30.80, is about
1/6th of the smallest value, 178, reported for a 1/4-inch
wide strip of sandpaper (ref. (25)).

In order to see whether or not there is any relation
between the largest value of Rey in the laminar boundary layer
oo a body of revolution and Reg p, the values of Reg, T were
plotted against the largest vagﬁe of Re, ahead of transition
for five of the seven cases analyzed (fig. 9). (See also Table 5)
Two of the cases do not appear on figure 9 because for one of
them, the Hemisphere-Cylinder, the flow was already turbulent
at the first thermocouple located at 11 1/2° from the nose. Con-
sequently, the last and only thermocouple that indicated laminar
flow was the one at the nose. The original investigators
(ref. (11)) suggest that perhaps irregularities other than the
five-microinch surface roughness caused the early transition.

The other case of the seven that does not appear in figure 9
is that for the Spherical-Segment-Nose Cylinder. In this case
transition did not occur on the portion of the body containing
thermocouples and so values of Reg r could not be calculated.
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The maximum value of Rex ahead of transition, called Reyx y,
rather than its value at transition, was used because for a
surface with continuously distributed roughness, Rek N rather
than Rey 7, 18 a measure of the largest disturbance introduced
into the'goundary layer by the roughness and so is probably a
better measure of the effect of roughness on transition than
Rex 7. The use of Rey y 1S analogous to the use of Rey when
transition is caused gy a roughness strip, Thus, when tran-
sition occurs downstream of the roughness strip, Rex T is zero
and the relation is between Reg, T and Rex \. Actually, a
better criterion than either Rek.u or Rex,T 18 probably one
that depends on the distribution of Rey in the entire region
upstream of transition.

It may be of interest to note that the data for & surface
completely covered with sand roughness (ref. (26) and page
450 of ref. (22)) show that the transition point is first
affected by roughness when ugkg/ve reaches about 120, or about
60 when the nominal height k is substituted for the equivalent
sand roughness kg. The associated value of Rex T is about
.664 x 10°, For these data transition is therefore first
affected when Rex M 18 near 60. On the other hand, a calcu-
lation of Rex T for these data results in a value of about
1.5. This number is obtained from the definition

Re = lﬁéli (incompressible flow)
e
K V
where . =
MK:“LU:') K (’?‘ Smt\\)
Y Jur
and the relation,
) T
YA
Then —_ —=\2 =
R = el 2
eK i‘j‘ (—,;a"l
but

Tor 332

—

...EL

e R
for the zero pressure gradient data of reference (26).
Therefore

31
CONFIDENTIAL



CONFIDENTIAL
NOLTR 62-25

332 7T K\%
. 7?;K =3 <{ “&ri)
For quax y

Re, = 66415 and (V;__.y o

the result is
?eKz 197

That is, the value of Rek,T when transition first begins to
move forward on a surface with continously distributed roughness
is much less than values of Rexy previously quoted for the first
effect of roughness strips on transition (ref. (25)). Note,
however, that values of Rex,T not far from 1.47 have previously
appeared in the literature. For example, in reference (27) a
value of Rey T as low as 7.35 is given. Moreover, in reference
(19) a still’lower value of Regx T, namely, about two is given.
In this case the value of Rey at the location where K is equal
to § is about 400; this value is thus equal to Rex M. Conse-
quently, it appears that for surfaces completely covered with
roughness the value of Rey T can be near unity where transition
is first affected by the roughness. The smallest value of
Rex M previously given in the literature, seems, however, to

be that of reference (26), that is, a value near 60.

The data in figure 9 cover a range of Rex y from about
.008 to about 31, that is, from about 1/7000 to about 1/2 of
the value 60, The largest value, 30.8, occurred on a patch
of roughness that caused Reg'T to drop from about 1082 to about
177 on the i lliptical-Nose Cylinder. Consequently, transition
is affected when Reg y is as low as 30.8. Moreover, the data
in figure 9 indicate that the two points for the Elliptical-
Nose Cylinder, namely, the points for Rek,y of 30.8 and .01825,
are consistent with the variation between Reg T and Reg y
indicated by the other four sets of data. It'is enphasized
that all the data of figure 9 are for blunt bodies of revolution
in supersonic flight with Reg . much larger than Reg.

The line drawn through the data in figure 9 is a least-
squares line for log Ree’r against log Rek,u. Its equation is

— 424
Ree‘-r ./88

’RQK,V\
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Although the equation of the line is given, it is not concluded
that figure 9 establishes a connection between Reg 1 and Rey y.
The reason is that an application of the information in refer-
ence (23) shows that the scatter of the data around the least-
squares line is too large to allow the conclusion to be drawn
from only five sets of data that figure 9 establishes a re-
lation between Reg T and Rex y for blunt bodies of revolution
in supersonic flight with Reg,c much greater than Reg.

On the other hand, even if there really were a relation
between Reg T and Rekx y somewhat like that shown by the least-
squares line of figure 9, some scatter of the data would still
be expected. The reasons are: first, the values of Reg T
were computed for the rearmost thermocouple at which the flow
was laminar. Because transition often began between two
thermocouples, its precise location and, consequently, the
precise value of Reg'T, could not be found. Second, the
value of the surface roughness was not obtained in the same
way in all the tests (see Table 3). Consequently, some of
the roughness Reynolds numbers probably are not directly
comparable. Note that Re, 1is proportional to the roughness
height squared. Third, the surfaces were not all finished
by the same process and so two surfaces with the same measured
roughness height can affect transition differently (see ref.
(29)). The fourth reason is that not every part of the surface
of the bodies could be examined with a microscope. Fifth,
these roughness data are for the bodies before flight. Because
the bodies could not be examined after flight the conditions
of their surfaces when transition occurred are not really known.
These reasons would probably be sufficient to cause a fairly
large amount of scatter even if there were a strong connection
between Reg, T and Rex y. In spite of these reasons for the
data to scafter, it is probably not correct to conclude
anything more from figure 9 than that the previous impression,
namely, ""the smoother the surface the greater the likelihood
of extensive regions of laminar flow," is re-enforced by these
data.

It is remarked that a plot of Reg 1 against (¥,/tg)p, shown
in figure 10, (see also Table 5) indicates a very much weaker
connection between Reg T and (ty/te)T than indicated in figure 9
between Reg T and Rey . Note the large amount of scatter. The
line drawn in figure 10 is a least-squares line for log Reg
against log (ty/te)T and has the equation ’

-Z 415
?ee)—r é <{¢
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SUMMARY

Because of the importance of aerodynamic heating at high
speeds and because the rate of heat transfer is much greater
for a turbulent than for a laminar boundary layer it is
important to be able to estimate the location at which the
flow changes from laminar to turbulent. The main result of
previous theoretical work is a theory that can be used to
estimate the location at which the laminar boundary layer
becomes unstable once the necessary parameters of the laminar
boundary layer are known. In the present investigation these
parameters are calculated by the Cohen and Reshotko method for
seven blunt bodies of revolution flying at supersonic speeds.
A comparison of the results of the stability theory with
transition points determined from heat-transfer distributions
obtained for these bodies by previous investigators then shows
that when transition occurred it took place even though the
boundary layer was computed to be very stable for the entire
region between the stagnation and the transition point. It
is suggested that in these cases transition probably was not
caused by the growth of the small two-dimensional wave-like
disturbances imposed at one instant as assumed in the stability
theory used in the present investigation.

In every case transition occurred at a larger boundary-
layer Reynolds number than the estimated minimum Reynolds
number for transition. Consequently, no contradiction of
the assumption that there is a minimum transition Reynolds
number and no disagreement with the results of the method for
estimating this Reynolds number was found.

A plot of the calculated boundary-layer Reynolds number
at transition against the calculated maximum roughness Reynolds
number ahead of transition for the five of the seven sets of
data for which transition data were available apparently
showed a connection. A further examination indicated, however,
that the scatter of these data is too large to allow the
conclusion to be drawn from only five sets of data that there
really is a connection. The conclusion seems to be only that
the likelihood of obtaining large regions of laminar flow
increases as the body is made smoother. It is remarked that
the dependence of the boundary-layer Reynolds number at
transition on the wall temperature ratio at transition was
very much weaker than on the maximum roughness Reynolds
number,
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Table 2

BODY PRESSURE DISTRIBUTION, WALL TEMPERATURE DISTRIBUTION,
AND RADIUS DISTRIBUTION DATA

Pressure Distribution

Wall Temperature Distribution

Radius Distribution

Uy C - col'x
P’ P

X 3.80

From dashed line of
figure 3 of reference

(9)

labular representation of
tw. tgq. Obtained from
reference (9),.

0€x<1,31772
R=sin x
x>1,31772
R= sin 75.5°
(x=-1.31772)81n 14.5

50° Hemisphere- Cp«' - coszx Tabular representation of Re=sin x
Cone ty. Obtained from reference
reference (10) (1v),

I b
Hemisphere [N ‘p - coszx Tabular representation of R=gin x
Cvlinder P ° Ubtained from reference

reference (11)

Ty
dn.

"l loth-bower"
Nose ~haype

reference (12)

labular representation
of pe P, from “measured”
curve of figure Y of

Tabular representation of
tw., Obtained from reference
(12).

Tabular representation
obt-ln?d from

reference (12) R=A xllo ¢« B xg
where A-.79750(5TU)
B=.01234Y
i and —_——
k ra (hx‘
x= Lol — dr
! So i UR
Flat-Face COne-l 0« x *.9800 Tabular representation of U x* 1, Rex
tylinder Tabular representation t,. Obtained from reference 1--x=1.1264,
reference (13) of by Pg trg? ":ollurod“ 3. . ) / x-1 )
curve (Mgp= of figure Hel+,0959281n LMV
15 ot reference (30). \
.9800° x - 1.311* fairing ; : 1.1204° x* 4.607,
betveen end py Py values. i K=1.0924..2504(x-1.1264
1.411° x - 4.361, Be’io | x .- 4.607, Rel Y68
equal to value for sharp
cone,
4.301° x‘ 4.711, faairing
between end pgs/Po values.
X " 4.711, Pe/Po equal to
Pao Po
_— 4
! !
spherical- V- x < .40 | Tabular representation of 0+ x* .46
hegmeut-Nose Tabular representation |ty. Ubtained from reference R=sin x
tylinger of ﬁe Py from figure 17 (14) . X .46
reference (14) ' of reference (14), Re, 4444
4n=x L,5210, fafring
between end pe Po values.
X -.5210, pe Po equal to
P - Po
Flliptical- v x1.1147 Tabular representation of 0" x*“1,1147
Nose ', linder obtained from Tw. Obtained from reference Tabular representation

references (lu)
and (1o} '

Cplp
reference (31).

x " 1.1147, pe/Pg from
curve faired through

data of figure 15 of
reference (15), with

Ve P, = 0491 at xe1.1147

(15) .

obtained from

-1
si R _

"
o? fx-szunzmu

1.
a"‘-x-( 2

x> 1.1147
Rel

Also,

1.2 2

5

()’

2
+ R

-1
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Table 3

SURFACE ROUGHANESS DATA

Surface Method Roughness Height
Body Roughness of to
(m, msicroinches) Measurement Calculate Rey
290 2 to 3 m on hemispherical Interferometer microscope 0<x<1,326
Heaisphere-Cone portion of nose. Inm
reference (9) 3 to 5 » on conical portion, x >1.326
Sm
50° Approximately 25 m rms Profilometer 70.7 »

Herisphere-Cone before surface oxidation
reference (10) to stabilize emissivity.
Hemiepbere 3 to 5w in vicinity of Interferometer microscope Se
Cylinder stagnation point; 5 n on a sample of nicksl
reference (11) aft of stagnation region polished in a manner

on hemisphere-cylinder similar to that used on the

forebody. Scratches of polished nose section.

order of 15 = aft of

stagnation region.
"1/10th-Power" Average of 6 to 8 m Surface finish attained 1S »
Nose Shape Maximum of 15 m with No. 600 paper
reference (12)
Plat-Face Cone- 15 to 20 =a; several fine Interferometer microscope 20°n
Cylinder scratches much deeper
reference (13) than 20 m»
Spherical-Segment-| 15 to 20 m; several fine Interferometer microscope 20 m

Nose Cylinder
reference (14)

ecratches much deeper
than 20 m,

Elliptical-Nose
Cylinder
references (15)
and (18)

1/2 n rass along

meridian ABCEA'

Patch of 45 m ras

along wmeridian ALM for
x> ,3491

11 individual surface
defects with depth greater
than 20 m, Deepest pit
70 m deep and 800 m in
diameter at position E.*
Remainder of pite less
than 40 m deep.

* (x = 1,181)

Iandividual surface defects
by electronic microscope

1.415 = along
ABCEA'

127.3 = along
ALM for x >, 3491,
1.415 = for

x< 3491
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Table 5
tw

CALCULATED VALUES OF ReO,T’ Rek,l’ AND (—) FOR

te/T

FIVE OF THE SEVEN BLUNT BODIES OF REVOLUTION

L=
Re Re [ Iw)
e,T k,M \Ee/ T
1557 .008195 1.011
1555 .009850 .9634
888 01115 .71802
713 .01243 .6776
632 .01426 .6282
642 .01573 .5959
251 4,270 .6934
274 6.600 .6038
293 9,060 .5472
297 10.06 .5108
303 11.02 .4838
579 .9400 .8148
449 .9840 .7143
465 1.144 .6516
519 2.100 . 4988
546 2.717 .4495
278 1,898 . 3542
277 1,790 . 3949
304 1.055 .1675
397 1,610 .1464
446 1.710 .1417
1082 .01825 .2271
177 30.80 .1866

29° Hemisphere-Cone

50° Hemisphere-Cone

»1/10-Power" Nose Shape

Flat-Face Cone-Cylinder

Elliptical-Nose Cylinder
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FIG. 3 HEMISPHERE-CYLINDER IN FLIGHT AT A MACH NUMBER OF
5.50 AND A REYNOLDS NUMBER, Re_, OF 9.75x 108
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o THERMOCOQOUPLE LOCATIONS
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